Jump to content

SBD Dauntless (from scratch)


Recommended Posts

To build the model from scratch you need a good reference. Initially I decided to use for this purpose detailed scale plans from the monograph published by KAGERO in 2007 (Authors: Krzysztof Janowicz, Andre Zbiegniewski, ISBN: 978-83-60445-25-9). It contains SBD Dauntless plans in scale 1:48, traced by Krzysztof Lukasik. They are quite detailed (up to the rivets on the aircraft skin). Apparently these drawings were made using Corel Draw or similar software. I scanned these drawings to do the basic verification. During this phase I did not find any flaws:

0001-03.jpg

All the key locations of the fuselage are in the same place in the side view and the top view. The proportions of the length and the span of the top view is correct: 0.787. (This ratio comes from 996/1266. According the dimensions specified in this monograph, the length of the SBD-3 fuselage was 996 cm [32’ 8”], while the wing span of all the Dauntless versions was 1266 cm [41’ 6”]). This good impression disappeared, when I compared side views of two different Dauntless versions: SBD-3 and SBD-5:

0001-04.jpg

According the monograph data, SBD-5 fuselage was 4 inches (about 10.1 cm) longer than SBD-3. (The SBD-5 and SBD-6 fuselage was 33’ long. Most probably it has slightly different engine cowling and the propeller. The airframe after the firewall was the same in all Dauntless versions). However, in this monograph they have the same length!

Maybe the textual data contains an error? In such a situation I try to find an “official”, archival drawing of the aircraft. They do not show many details, but contain the key dimensions. I have found on the Internet a BuAer Navy drawing of the SBD-5, from 1944:

0001-05.jpg

From the front view you can read the precise wing span: 41’ and 6 5/16“. From the side view you can read the exact length: 33’ and 1/8“.

This BuAer drawing isn’t an ideal source: it does not contain such details as panel seams. You can also find here some manual errors, made by its draftsman. While the aspect ratio of the top view matches the span and length specified in the dimensions, the actual fuselage length on the side view is somewhat shorter. (The positions of the wing and horizontal tailplane match in the side and top view match each other. It seems that the part of the vertical tail contour was shifted). On the other hand, the BuAer top view is a little bit asymmetric, and the firewall line is moved forward a little.

The good news is that the wing and the tailplane arrangement on the KAGERO plans and the BuAer drawing match each other:

0001-06.jpg

Then I compared the side views of these drawings (I marked the correct fuselage length measured on the BuAer top view in red):

0001-07.jpg

The differences of the side views are overwhelming: this is not only the engine cowling but also the cockpit canopy, the fin, and the tailwheel. (In general: none of these drawings shows the correct tail).

Thus, I can conclude: never trust the scale plans! I need a better reference, to fix these drawings.

In the next week I will show how I verify these drawings using photos.

Note: for editing these images I use two free, Open Source programs: GIMP (it is similar to Adobe Photoshop) and Inkscape (it is similar to Corel Draw or Adobe Illustrator). You can find more about them in this e-book.

Edited by Witold Jaworski
Link to post
Share on other sites

Oooooo.....I can't wait to see how this goes. The Dauntless is my favorite WWII Pacific-theater aircraft, so seeing one built from scratch is going to be a treat. Will you be doing any internal structures other than the cockpit and engine? Very much looking forward to this one!

:cheers:

Justin

Link to post
Share on other sites

Good to know :) - I always had sentiment to this little sturdy aircraft. Yes, I will try to recreate its skeleton, as well as the area in the front of the firewall.

BTW: I already studied some photos of this area behind the engine. The strange thing I noticed there is the solution of the air flow through the oil radiator. The outgoing air flows freely into the fuselage (I cannot see any air duct that would direct it outside). Ultimately it can go out through the slots on the fuselage sides, but it is rather "dirty" solution... Did I miss something? Do you know similar solutions in other aircraft?

Edited by Witold Jaworski
Link to post
Share on other sites
Have you established a single point of reference that you believe is reliable, especially where all the drawings agree?

It seems to be the area around the wing and the firewall. However, as I said, in the next week I will present results of comparing these side views with an ultimate reference: a semi-orthographic photo (it was made using a very long, "telescope" lens).

Link to post
Share on other sites

Amazing. I'm just fascinated with the whole concept of scratch building to a much higher degree of accuracy then the standard Dauntless kits in 1/48 scale. I'll be following along with great interest, and a lot of questions.

Joel

Link to post
Share on other sites

Before I start a new model, I collect its photos — as many as I can find, everywhere: in the books, magazines, on the Internet. Some of these photos are high-quality, detailed photos of restored airplanes. One of them is this a high-resolution photo from the web page of Chino Planes of Fame Air Museum:

0002-01.jpg

This is a special photo: it was made from a long distance using a “telescope” lens, which minimized the perspective barrel distortion. The airplane on this picture lowered its right wing, so its bottom parts are slightly shifted downward, but except this area it is a perfect reference!

I placed this photo in Inkscape, and set it horizontally (along the canopy frames). Then I mirrored it, for the comparison with the left side view:

0002-02.jpg

In Dauntless there are two long parallel lines that were perpendicular to the fuselage centerline: the trailing edge of the wing center section, and elevator leading edge. On this photo they are also parallel (more or less). This is the proof that we can neglect the perspective (barrel) distortion.

Now let’s compare the BuAer drawing (see the previous post) with the reference photo:

0002-03.jpg

In the first post I mentioned that this BuAer side view is too short. To make a fair comparison, I marked on this drawing the proper fuselage length (as on the BuAer top view). As you can see, the drawing matches the reference photo quite well!

It fits the photo even better when you correct the tail contour (so it matches the fuselage length in the BuAer top view):

0002-04.jpg

It seems that the BuAer drawing from 1944 matches the contour of the real aircraft quite well. In fact, it is much better than the contours of the detailed KAGERO drawings from 2007 (see previous post), which most probably are based on the drawings made by previous authors:

0002-05.jpg

I think that these KAGERO plans “accumulated” many decades of various errors. Do not be surprised: before the 1990 it was practically impossible to make such a “photo verification” like this one. Even today authors are used to redrawing earlier plans. They seldom compare their work with the real photos in the manner shown above.

Concluding: there is no good reference among the existing Dauntless drawings: the BuAer lacks details, while the KAGERO plans contain too many deviations. The plans from other authors have similar errors (I will not elaborate about it here).

It seems that I have to crate my own drawings!

In the next post I will refer the progress of this work (I hope that I will show you the corrected side view).

Edited by Witold Jaworski
Link to post
Share on other sites

Witold,

Just an amazing comparison from what I would consider to be the standard reference drawings. So now you're going to create your own set of plans in 1/48 scale. You've referenced versions 1 through 5. Which variant will you be scratch building? I'm assuming it will be either a 4 or 5.

Joel

Link to post
Share on other sites

This is going to be awesome. Are you going to create wood plugs for vacuforming, or will yo do a plank on frame over a skeleton? I have tried both and find them equally challenging. There is of course the resin casting method which I have never had any success in doing...

Link to post
Share on other sites

Thank you for your comments!

@Joel_W: I am drawing these new plans in Inkscape (a free 2D vector image editor), so the output can be in any scale. While studying engine cowling of various SBD versions, I have found interesting differences between SBD-2,3,4 and SBD-5,6. They were not revealed on any drawings before. I still have to check it, then I will compare fuselages of the SBD-3 and SBD-5, to share these findings with you. Then I will decide which one I will build.

@Major Walt: I will do this model in a rather unusual technology. (See here to learn more - but at this early stage I prefer to focus on the issues common to all modelers).

Edited by Witold Jaworski
Link to post
Share on other sites

As I wrote a week ago, I am working on a better drawing of the SBD-5. It is based on more than 1000 various photos. Below you can see the first version of the side view (click it to see the high-resolution version):

0003-01.jpg

This is not an ultimate drawing: I suppose that it will be updated during my work, following the new findings about the airframe shape and/or details. The dotted lines mark the rivet seams, but size and spacing of these dots does not match the real rivets. I prepare these plans to build a model: that's why I removed the outer wing section and horizontal tailplane. For these parts the most important drawing is the top view. To build them, on the side view I need the precise contours of their key sections (i.e. their airfoils as well as the incidence angles and spar locations). I draw three profiles: first of the wing root, then the root of the outer wing section, and then the wing tip. Two different sources specifies different wing tip profiles: NACA-2409 (Performance Test Report, 1942) or NACA-2407 (BuAer drawing, 1944). However, the bottom contour of the NACA-2407 seems to be a little concave. Because I did not observe such an effect on the photos, I decided to use the thicker airfoil of NACA-2409. I still have to verify this detail when I build the wing. The airfoils of the tailplane were specified nowhere. I copied its root airfoil from a photo.

While drawing the side view you still have to think "in 3D". That's why you can see around this silhouette some auxiliary sketches: the front view of the engine cowling, and the contours of the center wing section. I draw the latter element just to mark the exact position of the first rib of the wing. It was hidden inside the fuselage. Note that this airfoil was a specific modification of the NACA-2415 shape: the part of the wing that houses the main landing gear was reshaped. In the effect, the leading edge of the center wing section has a small downward inclination.

On the next week I will present side views of two earlier Dauntless versions: the SBD-2 and SBD-3. I will discuss where are the differences in the length of the SBD-5 and SBD-3, 4, as well as the mystery of the "missing 7 inches" of the SBD-2.

Within two weeks I will present the corrected/verified top view.

Edited by Witold Jaworski
Link to post
Share on other sites

In this post I will show you how do I create Dauntless side views. First I used the “semi-orthogonal” photo of the SBD-5 as the reference to draw the side view of this version. This is the most important picture, because it provides reliable “general reference”:

0004-01.jpg

Then I used many other photos and sketched fragments of the other views to complete the side view details (note the multiple guide lines on these pictures):

0004-02.jpg

Note the large B/W photo that I used to verify the shape of the propeller hub and engine cowling. I could not compare it with other areas — the cockpit canopy, for example — because its perspective (barrel) distortion was too intense.

However, when the barrel distortion is moderate, we can revert it! See for example this side photo of another Dauntless version: the SBD-3:

0004-03.jpg

First I identified the undeformed fragment of the fuselage (in this case — around the firewall and the windscreen) then fitted this part of the photo into the drawing. Then, comparing the lengths of this photo and the side view, I concluded that it has a moderate barrel distortion. From the history of this design I know that the SBD-3 and SBD-5 had different engine cowlings. The other parts of their airframes had the same shape. This means that I could use the existing SBD-5 drawing from the firewall to the fin as the reference for the unwrapping process of this SBD-3. Then I unwrapped this photo using the GIMP. (Speaking more precisely – its “Lens Distortion” image filter. You can find all the details of this process in this book).

0004-04.jpg

Note that this operation “flattens” only the airplane contour that lies on the symmetry plane of the fuselage. All protruding elements, like wing and horizontal tailplane remain deformed. But it’s OK, I need this just this contour. While drawing, I will compensate the small remaining deformation of the bulkhead lines. (For example, the leading edge of the NACA cowling from this photo should be a straight line, but it is a very flat ellipse).

Of course, it is always better to prepare more than one of such “flattened” pictures, to minimize inevitable errors:

0004-05.jpg

NOTE: these two SBD-3 photos depict training aircraft, without the telescope gunsight. Such a gunsight was protruding through the windscreen in the combat airplanes.

On both SBD-3 photos you can see that the engine cowling is somewhat shorter than in the SBD-5. In fact, in the specifications you can find that these versions had different overall length:

- SBD-5: 33’ 1/8”;

- SBD-3: 32’ 8 ” (in some sources I also saw 32’ 8 4/5”)

However, on the scale plans authors attribute this difference to the longer propeller hub of the SBD-5 (It used different propeller: Hamilton standard hydromatic). Others did not bother about the different lengths of the SBD variants, and draw the profiles of all Dauntless versions alike.

Following the findings on the unwrapped photos I analyzed many other archival pictures. Below you can see the conclusion:

0004-06.jpg

It seems that in the SBD-5 the engine, together with the NACA cowling, was moved slightly forward. All other bulkheads remain in the same places. This modification shifted forward the center of gravity. I suppose that this correction improved some handling characteristics that changed after the doubling of the rear guns. (The second gun in the rear was introduced in 1942 to the SBD-3 as the “field” modification. It shifted the cg backward).

In my next post I will finish the side view matter, delivering you the complete side views of the SBD-3, SBD-2 and SBD-1 variants. I will also write about other non-existent length difference, which you can find in the books about the SBD Dauntless.

Link to post
Share on other sites

In addition to the side view of the SBD-5 presented in one of my previous posts, I have prepared side views of the earlier Dauntless versions: SBD-2 and SBD-3:

0005-01.jpg

(Here are the links to the high-resolution profile images of: SBD-2, SBD-3).

When you look into Dauntless specifications, you will find that all its models have the same span, but they often differ from each other in the length. This is a typical case, because the wing geometry determines the aircraft behavior. Thus, once “debugged” in the prototype (the stall characteristics etc.) it remains unaltered between subsequent versions. The fuselage shape is not so important, so it is often modified. In the effect, the length of the airplane often vary between subsequent versions.

In the previous post I described how the photos confirmed the different length of the SBD-5 (33’ 1/8”) and the SBD-3 (32’ 8”), listed in their specifications. The reason was the different engine mount, modified in the SBD-5. The same sources specify the length of the SBD-2 as 32’ 2”. This is something strange, because I cannot find any evidence of this significant, 6 inch difference between SBD-3 and SBD-2 on the photos!

The SBD-3 was a “quick and dirty” adaptation of the SBD-2 to the recognized requirements of the modern war. Douglas added armor plates to the pilot and gunner seats, self-sealing fuel tanks (reducing their capacity), doubled the rear guns. All the key elements of the design: the airframe and the engine, remained the same. Where is there the modification that changed the overall of length of the SBD-3 by 6”!?

I started to look for the sources of this information (the subsequent publications copy their specification data from the earlier ones, up to an ultimate source document). Ultimately it seems that it comes from the BuAer Performance Data Reports. There are two of such documents, created in 1942: one for the SBD-2 and one for the SBD-3. On their last pages you can find the measured airplane dimensions. The difference is there: LENGTH, LEVEL: 32’-8” in the SBD-3 report, and LENGTH, LEVEL: 32’-2” in the SBD-2 report. (Unfortunately, they did not specified the length on wheels for the SBD-2, so there is no double-check). Note that all other dimensions are the same. I speculated that the reason of these differences lies in the propeller spinner: it was often removed. If the tested SBD-3 had this spinner, and the SBD-2 didn’t — what was the eventual difference? I tried to check this option, but it shortens the fuselage length by less than 4”.

What’s more interesting: the only survived SBD-2 is owned by the National Navy Aviation Museum in Pensacola. On their web page the owner specifies the length of this airplane as 32’ 8” — the same as the SBD-3! Thinking further about it, I noticed the manual corrections of typing errors in other SBD performance data reports. So I have following hypothesis:

  • The SBD-2 and SBD-3 had the same length: 32’ 8”, as specified by the owner of the restored SBD-2 (NAM in Pensacola);
  • The typist of the BuAer Performance Data Report made a mistake (most probably —deciphering the handwritten measure results he/she read “2” instead “8”). The authors of the first publications about SBD Dauntless used this source, and the others used their publications. So the initial error was multiplied;

Thus I assumed that the SBD-2 length specified in Performance Data report is wrong. Basically it was the same as the SBD-3. It also applies to the SBD-1:

0005-03.jpg

(Here is the link to high resolution profile image of the SBD-1). The only external difference between the SBD-1 and SBD-2 is the larger air scoop on the top of the engine cowling.

Conclusion from this little investigation (in fact, it took me a few days): do not trust blindly the specified width and wing span of a historical airplane! When you compare the different sources you will find that sometimes these figures are different. Always try to verify available data. The wing span is less error-prone because it usually does not vary between subsequent versions. Remember that the photos are always the ultimate evidence.

In the next post I will present the updated/verified Dauntless top view.

Link to post
Share on other sites

fulcrum1, Joel_W, thank you for your interest in this subject :) ! Below I described another step in this process:

This Monday I finally got the “Instructions for the Erection and Maintenance of the Model SBD-6 Airplane” book – more than 600 pages about the Dauntless, published by Douglas in March 1944. Because of the lengthy title, I will refer to this book as the “SBD Maintenance Manual” or the “Douglas manual”. In spite that it describes the last produced version, it is also usable for the earlier models: as I mentioned in one of the previous posts, the SBD-1 airframe behind the firewall differs only in a few details (the double gun mount, gunsight type, lack of the YAGI antennas) from the SBD-6.

Inside you can find the SBD-6 general arrangement drawings, as well as the stations diagram:

0006-01.jpg

Here are the links to the high-resolution versions: side view (cropped from the page), top and front view, stations diagram. As you can see these Douglas diagrams contain more dimensions than the BuAer drawings. Their chains on the side view allow for verification of the wing location, as well as the wing and tailplane incidence angles. They also allow you to determine the basic “trapeze” around the rudder and the fin. From the front view you can also read the dihedral angle of the outer wing panels (9⁰ 19’).

The dimensions from the top view allowed me to draw the basic trapezes around the wing and tailplane, as well as to determine locations of the aileron and elevator hinge axes. This information, combined with dimensions from the side view, allows for determining the precise location of the firewall, wings and empennage. I used them to verify my scale plans. Sometimes they just confirmed what I determined before (for example — locations of the wing or the last bulkhead). Sometimes they revealed the errors I made. I will write more about it in the next post. So here is the current, updated version of my drawings:

0006-02.jpg

Because of the formatting issues I had to split this image into two parts:

0006-03.jpg

(Click here to get these drawings as a single, high-resolution image). Note that I draw the outer wing panel without its dihedral (it is much easier to build its model using such a “flat” reference). Thus when you check proportions of this top view, its span/length ratio is somewhat greater than the expected value of 41’ 6” / 33’. What is interesting, the dimensions on the general arrangement drawing indicate that the “official” wing span does not include the size of the running lights:

0006-04.jpg

To obtain the “physical” wing span value you have to add 1.5” to each wing. I used similar convention when I matched the fuselage contour against its dimension (33’ 1/8”). These dimension lines are more obscured on the side view, but for the matching purposes I skipped the length of the running light cover protruding from the tip of the tail (1”).

In general, after all these updates I feel more confidence in my drawings. I know which elements come from the explicit dimensions of the general arrangement diagram, which from the photos, and which are based on other drawings or just on an assumption. The only larger element that I was not able to verify is the fuselage width (i.e. its contour in the top view). It is copied from the Douglas drawing. I was able just to verify it at the 9th bulkhead (station 140). I have a photo of this bulkhead from one of the Dauntless restorations, so I am sure that it fits properly into the fuselage contour on both views: the side view and the top view. However, I did not verify in any way the curved contour of the tail on the top view.

Frankly speaking, after this experience I am really glad that I am doing such a “slow start” to the modeling by preparing these drawings. It forced me to think twice (or even more times than twice) about every part of this airplane, resulting in better understanding of various nuances of its geometry. Sometimes I had to deliberate over a single line (like the gap between the elevator and stabilizer) for a whole day, watching and comparing hundreds of photos. In the effect I had to move a few lines around it on the plans. It was not a big deal. However, if I already started to build the model, adaptation of such findings would require a lot of work!

In next post I will tell you more on how I used the explicit dimensions from the Douglas drawings. They allowed me to find some flaws in my plans. Description of this case will give you an insight into the errors that you can make using the photos.

Edited by Witold Jaworski
Link to post
Share on other sites

The ultimate shape of airplane from post #19 resulted from matching my initial drawings against the Douglas general arrangement diagram. I couldn’t do it before, because this diagram comes from the Dauntless maintenance manual, which I received in previous week.

In this post I will show you how I do such a matching using the diagram shown below:

0007-01.jpg

When you use such a drawing, you can follow the general rules of the technical drawings. In particular:

  • The ultimate contour of the depicted object is on the outer side of the drawing lines;
  • When the shape on the drawing differs from the result of its explicit dimensions, the result of these dimensions prevails;

So, starting from the thrust line (i.e. the propeller axis) and from the firewall (the base of all dimensions), we can use the dimensions from this diagram to determine the wing chord position (points A and B on picture below):

0007-02a.jpg0007-02b.jpg

We can read from the side view dimensions that A (the rib tip) is located 20.38” from the thrust line and 9” from the firewall. The end of this rib is located 2.5⁰ lower, and the chord length of this rib is 115.12” (this dimension you can read from the top view). This determines location of point B.

I used the scale of my drawing (3.02 px/in) to convert the dimensions listed above into drawing units. Then I used guide lines to find these points of the wing chord on my plans:

0007-03.jpg

Fortunately points A, B on my plans occurred very close to wing leading and trailing edges.

You can use dimensions from the general arrangement drawings to sketch the basic trapeze around the wing (in the top view) as well as around the fin, rudder, and horizontal tailplane. These trapezes allow you to determine the basic shape and proportions of the airplane. I will show this method on the example of the fin and the rudder. Figure below shows their dimensions on the original drawing:

0007-04.jpg

Using these dimensions you can draw the basic trapezoid around the rudder and fin. You can also locate the chord of the horizontal tailplane as we did for the wing.

When I mapped these elements onto my plans, they revealed a serious flaw in my drawings:

0007-05.jpg

The whole tailplane seems to be shifted downward, and the rudder hinge is moved left! However, if the wing chord fits to the dimensions, then most probably this is the result of a random rotation. I have quickly verified this hypothesis using the reference photo:

0007-06.jpg

When I set the pivot point of this transformation above the wing see figure below), it was enough to rotate this photo by 0.27⁰ to fit the rudder and fin into given contour:

0007-07.jpg

It seems that I made mistake at the very beginning, trying to set this photo horizontally (in post #8). I estimated it using cockpit edge (as in figure above), because the better candidate for such a reference — the seam running on the side view along the reference line — is not visible on this picture. It seems that this fragment was too short for precise estimation of the horizontal direction. What’s more, I did not know at the beginning that in the top view this edge is not parallel to the fuselage centerline. Because the depicted airplane is slightly inclined toward the photo, I had to estimate location of this edge as the line lying between two cockpit edges visible on this picture. The BuAer drawing (copied from the Douglas general Arrangement Diagram) would help, if its draftsman did not made additional errors around the tail and empennage (see post #8).

Of course, the drawings that I published in post #19 did not contain any of the flaws that I have found here. I fixed all of them before. I just wanted to show you in this post what kind of errors you can do using a photo reference.

Conclusion: always try to find a general arrangement diagram of the airplane and use its explicit dimensions to verify your drawings. They often allow you to fix severe flaws in the geometry of the depicted aircraft!

Edited by Witold Jaworski
Link to post
Share on other sites

I used the scale of my drawing (3.02 px/in) to convert the dimensions listed above into drawing units. Then I used guide lines to find these points of the wing chord on my plans:

0007-03.jpg

Fortunately points A, B on my plans occurred very close to wing leading and trailing edges.

Witold,

You are doing some beautiful and exacting work. Hopefully the kit manufactruers will pay attention to your efforts!

I do not know how it may effect your measurements, but by definition, the CHORD of the wing technically and specifically is the measurement represented on your drawing by the thin dashed red line between points A and B, NOT the horizontal line in blue. Due to the angle of incidence of the wing, there would be a small discrepency which would put actual point slightly beyond the aft tip of the arrowhead on the blue line.

C2j

Link to post
Share on other sites

(...)

Witold,

You are doing some beautiful and exacting work. Hopefully the kit manufactruers will pay attention to your efforts!

I do not know how it may effect your measurements, but by definition, the CHORD of the wing technically and specifically is the measurement represented on your drawing by the thin dashed red line between points A and B, NOT the horizontal line in blue. Due to the angle of incidence of the wing, there would be a small discrepency which would put actual point slightly beyond the aft tip of the arrowhead on the blue line.

C2j

Thank you! In fact, I am not focused on the plastic kits. I am from another, new branch of scale modeling, that emerged during first decade of this century (see more here). The ultimate result will be a Dauntless model released on the CC license - like this P-40B model, which was already adapted as a paper model and for a flight simulator...

About the wing chord dimension: you are right about the chord length. However , I deliberately did it as shown in the drawing above. Why? Look at the source dimension of this 115.12 distance:

0007-02b.jpg

This dimension comes from the top view, and describes the distance from the leading edge to the trailing edge. All dimensions in this view lie on the horizontal plane (for example - the wing span). Thus this distance of 115.12" is parallel to the fuselage centerline, as depicted in my post. In fact, this is not the chord length.

Now I can see that the sentence I wrote in my post that "you can read the wing chord length from the top view" may be misleading. I did this simplification just for the text readability. For my excuse, as you pointed out, the difference is minimal: because cos(2.5deg) = 0.99905, the chord length of this wing section is = 115.12"/cos(2.5deg) = 115.23" (the difference is 0.11").

Edited by Witold Jaworski
Link to post
Share on other sites

In this post I will shortly describe how did I create this top view. Drawing such vertical views (from the top or bottom) of the SBD Dauntless is more difficult than the side view, because there are no “vertical” photos which you can use to verify and enhance the available plans. The methods presented below can be useful when you want to draw or verify blueprints of an aircraft.

I started my top view using everything I could, for example some photos from the restoration done by the Pacific Aviation Museum:

0008-01.jpg

The photo on the picture above has a strong barrel distortion. We cannot effectively “revert” it as we did for the side view. Why? Because the photo of the side view all contours of the aircraft lie on a single plane (the symmetry plane). This one contains are at least three important planes: the edges of the cockpit, the center of the fuselage (along its maximum width) and the wing contour. Each of them is located at a different distance from the camera, and each requires different distortion (fixing one of them you would spoil the others).

Nevertheless, taking all of this into account, this high-resolution photo is still useful to determine the rivets pattern of the center wing section, as well as the width of the cockpit frame. The edge of the Dauntless cockpit is formed by an important longeron: it determines the fuselage shape in this area. To precisely estimate the width of the cockpit canopies I draw auxiliary contours of their cross sections (you can see them on the picture above as the blue lines). Positions of the bulkheads are copied from the side view. On this top view I roughly approximated positons of the longerons below the cockpit edge. This is just a “workshop drawing”, not a regular scale plan: I will form the fuselage following its contour on the side view and a few key cross sections which I will draw later. Because of the barrel distortion of the reference photo I was not able to check the contour of the fuselage in the top view. This is the only element I had to redraw without any verification from the Douglas general arrangement drawing.

In next step I used dimensions from the Douglas diagram to draw the trapezes of the outer wing panels and horizontal tailplane:

0008-02.jpg

Picture above shows all the lines which you can deduce from the general dimensions provided by the manufacturer. We can further enrich it using the information from the stations diagram:

0008-03.jpg

The station diagram provides precise position of all wing ribs. Most of them are just a row of rivets, but along some of them you can find the panel seams.

All right, but this wing drawing is still missing its “vertical” elements: rivet and panel seams along the spars and stringers. How to determine their locations?

I had to review all the collected photos. Ultimately I chose one of the pictures from the web page of Chino Planes of Fame Air Museum:

0008-04.jpg

I rotated this photo, aligning the wings of this airplane to the vertical guides. As you can see, it is made with a telescopic camera, so that it is very close to a perfectly orthographic projection. (The guides of the tailplane are not ideally parallel to corresponding guides on the wings, but this difference is minimal). The left wing is depicted at a relatively high angle, so you can see clearly the rivet seams along the spars and stringers. I decided that I can use this picture to map these lines onto my drawing.

I flipped this image from right to left, and stretched it, fitting its wing into the basic trapeze:

0008-05.jpg

It allowed me to recreate the wingtip curve. In such a highly-deformed image the rib lines are bent. They match their “true” positions only on the wing edges. However, we can easily map from this image the spar and stringer lines. All of them continue from the center wing section. Combined with the ribs these lines form a kind of the “reference grid”, which cells allowed me to draw all the remaining details: the circular holes in the flaps, fixed slats openings, etc.

I used similar method to map the tip of the horizontal tailplane as well as its two spars. In the effect I obtained a detailed top view of the SBD Dauntless.

In the next post I will publish the bottom view.

Link to post
Share on other sites

During previous weeks I was working on the bottom view and other details of the SBD Dauntless. For example — I added a modified side view that reveals the engine and the cowling hidden under the NACA ring:

0009-01.jpg

Because of the formatting issues of this post I had to split the original square drawing into two parts:

0009-02.jpg

(Click here to get these drawings as a single, high-resolution image). As in the case of the top view I draw the outer wing panel without its dihedral.

Detailing of the bottom view resulted in minor updates of the side view:

0009-03.jpg

(See its high-resolution version).

I have already started working on the front view. One of the elements I need for the model are the key cross sections, thus I identified their shapes, and incorporated them into this drawing:

0009-04.jpg

I did not draw the first sections of the NACA cowling here, because they will be visible on the front view. As you can see there are large gaps between sections 2 and 3 and between 8 and 9. Why I did not add these intermediate contours? Because nothing special “happens” between these bulkheads: the resulting shape will be automatically interpolated during modeling.

I sketched the engine and the inner cowling, because I am going to model these parts. Analyzing this area I discovered many differences between the earlier versions (SBD-2, -3, -4) and the later versions (SBD-5, -6) than were not mentioned in any previous publications about the SBD:

  • Different cross section B (in the SBD-1…SBD-4 it had wider, elliptic shape);
  • Different widths of the oil radiator scoop;
  • Yet another carburetor air scoop: you can find in the books that in the SBD-5 it was removed from the NACA cowling and replaced by two intakes located between upper cylinders of the radial engine. However, they did not mention that they were just additional intakes for the filtered air (for the takeoff/landing from provisional ground airstrips). The main air scoop was still at the top of the fuselage, but since SBD-5 it was hidden behind the NACA cowling!

In the next post I will elaborate about these unpublished differences between the SBD versions, showing them on drawings. I will also prepare a simplified front view (for my model I do not need to redraw all the minor details there).

The drawings of this aircraft will be complete soon. I think that I will start building the first part of the model within two weeks.

Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...